Why is Artificial Intelligence important?

Image
The AI learning adventure explores intelligence and its connection to engineering and technology.  Using ideas about human intelligence and intelligence more broadly, engineers can create “artificial intelligence,”; that is, impart “human” intelligence into machines or technology (Classical AI) or design technology that can itself “create” intelligence (future AI).  In fact, understanding how the brain works—”reverse-engineering the brain”—and understanding how engineers design intelligent machines—machines that replicate human intelligence—is one of the “Grand Challenges of Engineering” as set forth by The National Academy of Engineering (NAE). The implications and benefits of understanding the brain are many.  In addition to advances in the treatment of brain injuries and diseases and advancements in communications technology and computer simulations, understanding the brain will allow the design of intelligent machines with even more signicant societal impacts....

Data Analyst vs Data Scientist vs Data Engineer

Who is a data analyst?


Data Analysts deliver value to their companies by taking data, using it to answer questions, and communicating the results to help make business decisions. Common tasks done by data analysts include data cleaning, performing analysis and creating data visualizations.

Depending on the industry, the data analyst could go by a different title (e.g. Business Analyst, Business Intelligence Analyst, Operations Analyst, Database Analyst). Regardless of title, the data analyst is a generalist who can fit into many roles and teams to help others make better data-driven decisions.

The data analyst in depth

The data analyst has the potential to turn a traditional business into a data-driven one. While often data analyst positions are ‘entry level’ jobs in the wider field of data, not all analysts are junior level. As effective communicators with a mastery over technical tools, data analysts are critical for companies that have segregated technical and business teams.
Their core responsibility is to help others track progress and optimize their focus. How can a marketer use analytics data to help launch their next campaign? How can a sales representative better identify which demographics to target? How can a CEO better understand the underlying reasons behind recent company growth? These are all questions that the data analyst provides the answer to by performing analysis and presenting the results. They undertake the complex jobof working with data to deliver value to their organization.
 An effective data analyst will take the guesswork out of business decisions and help the entire organization thrive. The data analyst must be an effective bridge between different teams by analyzing new data, combining different reports, and translating the outcomes. In turn, this is what allows the organization to maintain an accurate pulse check on its growth.


The nature of the skills required will depend on the company’s specific needs, but these are some common tasks:
  • Cleaning and organizing raw data.
  • Using descriptive statistics to get a big-picture view of their data.
  • Analyzing interesting trends found in the data.
  • Creating visualizations and dashboards to help the company interpret and make decisions with the data.
  • Presenting the results of a technical analysis to business clients or internal teams.
The data analyst brings significant value to both the technical and non-technical sides of an organization. Whether running exploratory analyses or explaining executive dashboards, the analyst fosters greater connection between teams.

Who is a data scientist?

A data scientist is a specialist that applies their expertise in statistics and building machine learning models to make predictions and answer key business questions.
A data scientist still needs to be able to clean, analyze, and visualize data, just like a data analyst. However, a data scientist will have more depth and expertise in these skills, and will also be able to train and optimize machine learning models.

The data scientist in depth

The data scientist is an individual that can provide immense value by tackling more open-ended questions and leveraging their knowledge of advanced statistics and algorithms. If the analyst focuses on understanding data from the past and present perspectives, then the scientist focuses on producing reliable predictions for the future.

The data scientist will uncover hidden insights by leveraging both supervised (e.g. classification, regression) and unsupervised learning (e.g. clustering, neural networks, anomaly detection) methods toward their machine learning models. They are essentially training mathematical models that will allow them to better identify patterns and derive accurate predictions.

The following are examples of work performed by data scientists:
  • Evaluating statistical models to determine the validity of analyses.
  • Using machine learning to build better predictive algorithms.
  • Testing and continuously improving the accuracy of machine learning models.
  • Building data visualizations to summarize the conclusion of an advanced analysis.
Data scientists bring an entirely new approach and perspective to understanding data. While an analyst may be able to describe trends and translate those results into business terms, the scientist will raise new questions and be able to build models to make predictions based on new data.

Who is a data engineer?



Data engineers build and optimize the systems that allow data scientists and analysts to perform their work. Every company depends on its data to be accurate and accessible to individuals who need to work with it. The data engineer ensures that any data is properly received, transformed, stored, and made acessible to other users.

The data engineer in depth

The data engineer establishes the foundation that the data analysts and scientists build upon. Data engineers are responsible for constructing data pipelines and often have to use complex tools and techniques to handle data at scale. Unlike the previous two career paths, data engineering leans a lot more towards a software development skillset.


At larger organizations, data engineers can have different focuses such as leveraging data tools, maintaining databases, and creating and managing data pipelines. Whatever the focus may be, a good data engineer allows a data scientist or analyst to focus on solving analytical problems, rather than having to move data from source to source.
The data engineer’s mindset is often more focused on building and optimization. The following are examples of tasks that a data engineer might be working on:

  • Building APIs for data consumption.
  • Integrating external or new datasets into existing data pipelines.
  • Applying feature transformations for machine learning models on new data.
  • Continuously monitoring and testing the system to ensure optimized performance.

Comments


  1. I like your blog, I read this blog please update more content on hacking,Nice post
    best data science course

    ReplyDelete

Post a Comment

Popular posts from this blog

Innovate your business through Test and Learning Approach

Waterfall vs Agile and Scrum Methodology

How to identify the right DevOps tools | NIIT digiNxt